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ALGÈBRE	 DE	 BOOLE	 ET	 FONCTIONS	
BOOLÉENNES	

1 PROPRIÉTÉS 
L’algèbre de Boole est définie sur  l'ensemble E2 constitué des éléments {0,1}.  Il existe une 
relation d'ordre 0 < 1, et trois opérations de base. La complémentation, définie en Table 1 
est une application de E2 sur E2. Les opérations union (Table 2, gauche) appelée encore ou, 
max et qui est notée +, et intersection (Table 2, droite) appelée encore et, min, qui est notée 
. sont des applications de E2 X E2 ‐> E2 
 

x   x
0  1 
1  0 

Table 1 : complémentation 

 
x  y  S    x  y  S 
0  0  0    0  0  0 
0  1  1    0  1  0 
1  0  1    1  0  0 
1  1  1    1  1  1 

      Table 2 : Union, +, ou, max      Intersection, ., et, min 

Pour tout a, b, c �E2, les propriétés suivantes sont vérifiées :�
 
1) 0 est l'élément minimum, 1 est l'élément maximum 
  a.1 = a      car min (a,1) = a 
  a+0 = a     car max (a,0) = a 
  a.0 = 0 
  a+1 = 1 
2) complément : 
    a. a  0  car min (0,1) = 0 
    a +a  1  car max (0,1) = 1 
3) Commutativité 
  a.b = b.a  
  a+b = b+a  
  car les fonctions min et max sont commutatives 
4) Associativité 
  a.(b.c) = (a.b).c= a.b.c 
  a+(b+c) = (a+b)+c= a+b+c 
  car les fonctions min et max sont associatives 
5) Distributivité 
  a.(b+c) = a.b+a.c 
  a+(b.c) = (a+b).(a+c) 
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6) THÉORÈME DE MORGAN 
    a.b  a � b  
 
      a +b  a .b  
 
La Table 3 constitue une démonstration de ce théorème. 
 
a  b    a     b   a.b    a.b a+b   a � b  a.b   a +b  
0  0  1  1  0  1  0  1  1  1 
0  1  1  0  0  0  1  1  1  0 
1  0  0  1  0  0  1  1  1  0 
1  1  0  0  1  0  1  0  0  0 

Table 3 : théorème de Morgan 

1.1 OPÉRATEURS NAND ET NOR 
Les opérateurs NAND et NOR ont la définition suivante. 
NAND (a, b) =   a.b  a � b  
NOR (a,b) =     a +b  a .b  
Ces  opérateurs  sont  fonctionnellement  complets  :  avec  un  de  ces  opérateurs,  on  peut 
implanter les fonctions complément, min et max de l’algèbre de Boole.  
La démonstration pour l’opérateur NAND est la suivante : 
  x  x.1  x.x   
  x. y  1.x. y  
  x +y  1.x.1. y  
La  Figure 1 donne  la  représentation  symbolique des différents opérateurs,  sous  forme de 
portes  logiques.  L’inverseur  (NOT)    correspond à  la  fonction  complémentation.  Les autres 
portes ont le même nom que les fonctions logiques correspondantes. 

NOT ET OU NAND NOR  
Figure 1 : Opérateurs logiques. 

La Figure 2 donne les deux représentations graphiques du théorème de Morgan. 

 
 

 
Figure 2 : Représentation graphique du théorème de Morgan 

Les portes  logiques que nous avons présentées  travaillent  sur  les  valeurs  logiques 0 et 1. 
Elles  supposent un  fonctionnement  instantané,  c’est  à dire un  retard nul  entre entrée et 
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sorties.  Ces  portes  sont  implantées  avec  des  circuits  électriques,  qui  travaillent  sur  des 
variables  continues.  Il  y  a  toujours  un  retard  entre  entrée  et  sortie.  Il  est  important  de 
souligner que toutes les propriétés de l’algèbre de Boole ne sont pas toujours vérifiées avec 
les circuits réels. Les deux propriétés   a. a  0   et   a +a  1  ne sont pas toujours vérifiées. La 
Figure 3 montre qu’à cause des temps de retard entre l’entrée et la sortie d’un inverseur, il y 
a  deux  périodes  pendant  lesquelles  les  deux  relations  ne  sont  pas  vérifiées  :  c’est  le  cas 
lorsque  E  =    E. Cette  situation  correspond  à  ce que  l’on  appelle  un  aléa.  Les  signaux  des 
circuits  physiques  ne  sont  donc  valides  que  lorsque  les  lois  de  l’algèbre  de  Boole  sont 
vérifiées, c’est à dire en dehors des aléas. 

E S=E
E

S=E

E=E

E=E

 
Figure 3 : Les aléas liés aux temps de retard dans un inverseur 

1.2 FONCTIONS BOOLÉENNES 
Dans le cas général, les fonctions booléennes sont une application de Ei x Ej x Ek ..x Ep ‐> E2 
où Ei= {0, 1, 2,...,i‐1}. Les variables d’entrée ont un nombre fini de valeurs entières. La Table 
4 donne la table de vérité d’une fonction booléenne pour laquelle la variable x est binaire et 
la variable y est ternaire (3 états possibles). 

 
x  y  S 
0  0  1 
0  1  0 
0  2  1 
1  0  0 
1  1  0 
1  2  1 

Table 4 : Exemple de fonction booléenne 

Comme les fonctions utilisées pratiquement ont des variables d’entrée de même nature que 
les  variables  de  sortie,  on  se  restreint  au  cas  particulier  des  fonctions  booléennes 
applications de E2 x E2 x E2...x E2 ‐> E2. La Table 5 donne l’exemple d’une telle fonction de 
deux  variables  x  et  y. Cette manière  de  représenter  une  fonction  booléenne  est  appelée 
table  de  vérité.  Les  tables  de  vérité  illustrent  les  deux  problèmes  rencontrés  lors  du 
traitement d’une fonction booléenne : il faut être capable de repérer une entrée de la table, 
et il faut être capable d’associer une valeur de la fonction à chaque entrée de la table. 
 

  x  y  S 
m0  0  0  0 
m1  0  1  1 
m2  1  0  1 
m3  1  1  0 

Table 5 : Exemple de fonction booléenne de deux variables. 
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Il existe différentes manières d'exprimer une fonction booléenne.  

1.2.1 Forme disjonctive normale 
A  chaque  entrée  de  la  table,  on  associe  une  variable  binaire mi  appelée  terme  produit 
(minterm). m0 est associé à la ligne 0, m1 est associé à la ligne 1, etc. 
m0 = 1 si x = 0 ET y = 0, soit   x  1  ET   y  1 , soit   x. y  1  et   m0  x. y  
On repère de cette manière chaque ligne de la Table 6. 
 

x  y  m0 m1  m2 m3 
0  0  1  0  0  0 
0  1  0  1  0  0 
1  0  0  0  1  0 
1  1  0  0  0  1 

Table 6 : Termes produit 

Pour une table de vérité à deux entrées, les termes produit sont : 

    m0  x. y  
    m1  x. y  
    m2  x. y  
    m3  x. y  
Un terme produit est donc constitué de  l'intersection (et) de toutes  les variables d'entrées, 
complémentées si leur valeur est 0, non complémentées si leur valeur est 1. Puis, à chaque 
terme produit mi, on associe la valeur Si de la fonction booléenne S (Table 7). 
Ceci peut être réalisé sous la forme d’une union de produits, de la manière suivante : 
  S = m0.S0 + m1.S1 + m2.S2 + m3.S3. 
Pour une configuration d’entrée, un seul terme mi est égal à 1 et tous les autres sont à 0. On 
a donc automatiquement S = mi.Si = Si pour le terme produit mi à 1.  
0n peut remarquer que  les valeurs 0 de  la fonction (Si=0) ne contribuent pas à  l’expression 
de S  (car mi. 0 = 0, et 0 est absorbé dans  l’union  logique). On  remarque d’autre part que 
lorsque Si=1, on a mi.Si = mi. On peut en déduire  la  règle pratique suivante, qui donne  la 
forme disjonctive normale d’une fonction booléenne :  la forme disjonctive normale d’une 
fonction booléenne est obtenue par union  logique des  termes produits pour  lesquels  la 
fonction a pour valeur 1. 
 

  x  y  S 
m0  0  0  S0 
m1  0  1  S1 
m2  1  0  S2 
m3  1  1  S3 

Table 7 : Termes produit et sorties 
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x  y  m0  m1 m2 m3 m1+m2  S 
0  0  1  0  0  0  0  0 
0  1  0  1  0  0  1  1 
1  0  0  0  1  0  1  1 
1  1  0  0  0  1  0  0 

Table 8 : Exemple de fonction 

S = 1 si m1 = 1 ou si m2 = 1, soit m1 + m2 = 1 ==> S = m1 + m2 

    S  x. y � x. y  
On peut utiliser cette propriété de  la forme disjonctive normale pour remplacer  la table de 
vérité par une forme plus condensée de représentation. Une fonction peut être représentée 
sous la forme  
  f=¦m (liste des termes produit pour lesquels la fonction est égale à 1).   
Par exemple, la fonction de la Table 5 s’écrira f=¦m(1,2). 
Soit l’exemple de la Table 8, qui utilise la fonction de la Table 5:  
La  fonction particulière que nous avons prise  comme exemple  s'appelle OU exclusif et  se 
note �. Son schéma logique est donné en Figure 4.  

 

 
Figure 4 : Porte logique Ou exclusif 

L’implémentation de la fonction Ou exclusif sous forme de Ou de Et qui résulte de la forme 
disjonctive normale est présentée en Figure 5. 

x

y

S

 
Figure 5 : Ou exclusif résultant de la forme disjonctive 

1.2.2 Forme NAND de NAND. 
La forme disjonctive normale peut se transformer en forme NAND de NAND, par application 
du théorème de Morgan. La Figure 6 l’illustre graphiquement. La forme disjonctive normale 
se transforme automatiquement1 en forme NAND de NAND en remplaçant les portes Et par 
des portes NAND et les portes Ou par des portes NAND. 

1.2.3 Forme conjonctive normale 
Il existe une autre  forme de représentation  :  la  forme conjonctive normale. On définit des 
termes  somme  (maxtermes),  dont  on  fait  l'intersection.  La  Table  9  présente  les  termes 
somme pour une fonction à deux entrées. 
 
 
                                                       
1  Attention  :  Lorsqu’une  variable  d’entrée  entre  directement  sur  la  porte  Ou,  on  doit 
considérer qu’elle  traverse une porte Et  à une entrée, qui  se  transforme en un  inverseur 
(porte Nand à une entrée). 
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x  y  M0 M1 M2 M3 
0  0  0  1  1  1 
0  1  1  0  1  1 
1  0  1  1  0  1 
1  1  1  1  1  0 

Table 9 : Termes somme 

 

x

y

S

x

y

S

x

y

S

 
Figure  6 :  Exemple  de  transformation  de  forme  Ou  de  Et  en  forme  NAND  de 
NAND. 

 
Pour une table de vérité à deux entrées, les termes somme sont : 
  M0 = x + y 
  M1 = x +   y  
  M2 =   x  + y 
  M3 =   x  +   y  
 
Un  terme  somme est donc  constitué de  l’union  (ou) de  toutes  les variables d'entrée, non 
complémentées si leur valeur est 0, complémentées si leur valeur est 1. 
A chaque terme somme Mi, on associe la valeur Si de la fonction (Table 10). 

  x  y  S 
M0  0  0  S0 
M1  0  1  S1 
M2  1  0  S2 
M3  1  1  S3 

Table 10 

Ceci peut être réalisé sous la forme d’une intersection de sommes, de la manière suivante : 
  S = (M0+S0) . (M1+S1) . (M2+S2) . (M3+S3) 
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Pour une configuration d’entrée, un seul terme Mi est égal à 0 et tous les autres sont à 1. On 
a donc automatiquement S = Mi+Si = Si pour le terme produit Mi à 0. En effet, pour j≠i, on a 
Mj = 1 et donc Mj+Sj = 1, qui sont des termes neutres pour l’intersection.  
0n peut remarquer que  les valeurs 1 de  la fonction (Si=1) ne contribuent pas à  l’expression 
de S (car Mi + 1 = 1, et 1 est absorbé dans le produit logique). On remarque d’autre part que 
lorsque Si=0, on a Mi+Si = Mi. On peut en déduire  la règle pratique suivante, qui donne  la 
forme conjonctive normale d’une fonction booléenne : la forme conjonctive normale d’une 
fonction booléenne est obtenue par produit  logique des  termes somme pour  lesquels  la 
fonction a pour valeur 0. 
Soit l’exemple de la Table 11, qui utilise la même fonction que la Table 5 :  
 
 
 

x  y  M0  M1 M2 M3  M0.M3  S 
0  0  0  1  1  1  0  0 
0  1  1  0  1  1  1  1 
1  0  1  1  0  1  1  1 
1  1  1  1  1  0  0  0 

Table 11 

S = 0 si M0 = 0 et si M3 = 0, soit  M0.M3 = 0 ==> S = M0.M3 
soit ܵ ൌ ሺݔ ൅ .ሻݕ ሺ̅ݔ ൅  തሻݕ
On peut montrer que cette forme est équivalente à celle qui résulte de la forme disjonctive 
normale. 

1.2.4 Forme NOR de NOR 
On montre de la même manière que toute fonction booléenne peut s'exprimer uniquement 
sous  forme  NOR  de  NOR.  La  forme  NOR  de  NOR  s'obtient  application  du  théorème  de 
Morgan sur  la  forme conjonctive normale  : on remplace  les portes Ou et  les portes Et par 
des portes NOR2. 

1.3 Simplification des expressions booléennes. 

Elles  découlent  de  l'application  des  propriétés  de  l'algèbre  de  Boole  définie  en  début  de 
chapitre. Soit l'exemple de la fonction de 2 variables (Table 12) 

  
  x  y  S 

m0  0  0  0 
m1  0  1  1 
m2  1  0  1 
m3  1  1  1 

Table 12 
                                                       
2  Attention  :  Lorsqu’une  variable  d’entrée  entre  directement  sur  la  porte  Et,  on  doit 
considérer qu’elle  traverse une porte Ou à une entrée, qui  se  transforme en un  inverseur 
(porte Nor à une entrée). 
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La forme non simplifiée s'écrit ܵ ൌ .ݔ̅ ݕ ൅ .ݔ തݕ ൅ .ݔ  	ݕ
L'application successive des règles conduit aux transformations suivantes : 
  ܵ ൌ .ݔ̅ ݕ ൅ .ݔ തݕ ൅ .ݔ ݕ ൅ .ݔ  ݕ car  x.y  =  x.y  +  x.y  puisque  x.y  +  x.y  =  x.y  (absorption)
  ܵ ൌ .ݔ̅ ݕ ൅ .ݔ ݕ ൅ .ݔ തݕ ൅ .ݔ  .par commutativité ݕ
  ܵ ൌ ሺ̅ݔ ൅ .ሻݔ ݕ ൅ .ݔ ሺݕത ൅  ሻ par distributivitéݕ
  S= 1.y + x.1 par absorption 
  S = y + x = x + y 
Ces  simplifications  peuvent  être  réalisées  graphiquement  à  l'aide  de  la  méthode  du 
diagramme de Karnaugh. Cette méthode se fonde sur une manière de représenter  la table 
de  vérité  qui  fait  apparaître  les  symétries  sur  les  variables.  La  Figure  7 :  Diagramme  de 
Karnaugh pour fonction à 2 entrées. présente l'exemple du diagramme de Karnaugh pour la 
fonction à 2 entrées de la table. Les quatre cases correspondent aux quatre termes produit 
m0 à m3. Les symétries selon x et y sont mises en évidence. Un regroupement de 2 éléments 
symétriques se traduit par  la suppression d'une variable dans un terme. Un regroupement 
de 4 éléments pour lesquels existent 2 symétries se traduit par la suppression de 2 variables 
dans un terme, etc. Nous présentons le diagramme de Karnaugh (Figure 8) dans le cas d'une 
fonction de 4 variables, avec les numéros de case correspondant aux numéros de mintermes 
dans l'hypothèse d'une numération binaire pour les bits e3e2e1e0 où e0 est le bit de poids 
faible. 
Les règles pour  la simplification des  fonctions booléennes avec  le diagramme de Karnaugh 
sont les suivantes :  

‐ tous  les termes produit pour  lesquels  la fonction est à 1 devront être pris au moins 
une fois dans un regroupement, ou seuls si aucun regroupement n'est possible. 

‐ faire  les  regroupements  de  taille maximale,  de manière  à  éliminer  le  plus  grand 
nombre possible de variables dans les termes de l'expression. 

‐ ne  prendre  que  les  regroupements  ou  termes  produit  nécessaires  pour  avoir  au 
moins une fois chaque 1, sans redondance. 

La méthode du diagramme de Karnaugh est efficace pour les expressions booléennes ayant 
au plus 4 entrées. Au delà,  la représentation graphique devient complexe,  il est difficile de 
mettre  en  évidence  les  symétries,  et  la méthode  devient  inutilisable. Dans  ce  cas,  il  fait 
utiliser des méthodes plus élaborées, comme celle de Quine ‐ Mc Cluskey, qui est la base des 
heuristiques utilisées dans un certain nombre de  logiciels spécialisés  (Espresso, Mc Boole). 
D'autres logiciels utilisent des méthodes de réécriture d'expressions.  
Il  faut  souligner que  le problème de  simplification d'expressions booléennes  se pose,  soit 
pour des expressions très simples à très peu de variables pour  lesquelles  le diagramme de 
Karnaugh est amplement suffisant, soit pour des expressions complexes à grand nombre de 
variables pour lesquelles les logiciels spécialisés sont inévitables. 

x
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y
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x.y x.y
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Figure 7 : Diagramme de Karnaugh pour fonction à 2 entrées. 
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Figure 8 : Diagramme de Karnaugh pour une fonction à quatre entrées 

1.3.1 Cas des fonctions booléennes incomplètement spécifiées. 
Il existe des fonctions booléennes pour lesquelles il n'y a pas de valeurs associées à certains 
termes produit. Ceux‐ci ne sont jamais "sélectionnés", et la valeur qui leur est associée peut 
être  indifféremment 0 ou 1. On note d  (don't  care) ou Ø  ce  cas  indifférent.  L'afficheur 7 
segments  (Figure  9)  est  un  exemple  particulier  de  fonction  booléenne  incomplètement 
spécifiée. On veut afficher les 10 chiffres décimaux à l'aide de 7 segments, notés de a à g, qui 
peuvent être à 0 (éteint) ou 1 (allumé). Le codage des 10 chiffres décimaux nécessite 4 bits, 
que  l'on  peut  noter  e3  à  e0.  La  Table  13donne  les  7  fonctions  booléennes  traduisant 
l'allumage des 7 segments a à g en fonction des bits e3 à e0. 

a

b

c

d

e

f

g

 
Figure 9 : Afficheur 7 segments 

 
Pour  simplifier de  telles  fonctions, on peut  indifféremment  associer  à Ø  la  valeur 0 ou 1, 
pour  simplifier au maximum. La Figure 10 montre  le diagramme de Karnaugh associé à  la 
fonction a de la  
La valeur simplifiée de la fonction est a = e1 + e3 + e0.e2 +   e0. e 2  
 
 
 
 
 

���

�� �	���5-6-TQ-INFO    



Notes de cours 

  10/10 

 
 
e3  e2  e1  e0    a  b  c  d  e  f  g 
0  0  0  0  0  1  1  1  1  1  1  0 
0  0  0  1  1  0  0  0  0  1  1  0 
0  0  1  0  2  1  0  1  1  0  1  1 
0  0  1  1  3  1  0  1  1  0  1  1 
0  1  0  0  4  0  1  0  0  1  1  1 
0  1  0  1  5  1  1  0  1  1  0  1 
0  1  1  0  6  1  1  1  1  1  0  1 
0  1  1  1  7  1  0  0  0  1  1  0 
1  0  0  0  8  1  1  1  1  1  1  1 
1  0  0  1  9  1  1  1  1  0  1  1 
1  0  1  0  10  Ø  Ø  Ø  Ø  Ø  Ø  Ø 
1  0  1  1  11  Ø  Ø  Ø  Ø  Ø  Ø  Ø 
1  1  0  0  12  Ø  Ø  Ø  Ø  Ø  Ø  Ø 
1  1  0  1  13  Ø  Ø  Ø  Ø  Ø  Ø  Ø 
1  1  1  0  14  Ø  Ø  Ø  Ø  Ø  Ø  Ø 
1  1  1  1  15  Ø  Ø  Ø  Ø  Ø  Ø  Ø 

Table 13 : afficheur 7 segments 
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Figure 10 : Diagramme de Karnaugh avec cas indifférents 
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